metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.7F5, D10.10M4(2), Dic5.11M4(2), (C4×C20).4C4, Dic5⋊C8⋊5C2, D10⋊C8.5C2, C5⋊2(C42.6C4), (C4×Dic5).28C4, (D5×C42).16C2, C10.9(C2×M4(2)), C10.C42⋊6C2, C10.4(C42⋊C2), Dic5.26(C4○D4), C22.65(C22×F5), C2.10(D5⋊M4(2)), (C4×Dic5).323C22, (C2×Dic5).320C23, C2.9(D10.C23), (C2×C4×D5).31C4, (C2×C5⋊C8).4C22, (C2×C4).100(C2×F5), (C2×C20).101(C2×C4), (C2×C4×D5).359C22, (C2×C10).22(C22×C4), (C2×Dic5).170(C2×C4), (C22×D5).122(C2×C4), SmallGroup(320,1022)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — Dic5⋊C8 — C42.7F5 |
Subgroups: 378 in 110 conjugacy classes, 46 normal (30 characteristic)
C1, C2 [×3], C2 [×2], C4 [×8], C22, C22 [×4], C5, C8 [×4], C2×C4 [×3], C2×C4 [×9], C23, D5 [×2], C10 [×3], C42, C42 [×3], C2×C8 [×4], C22×C4 [×3], Dic5 [×4], Dic5, C20 [×3], D10 [×2], D10 [×2], C2×C10, C8⋊C4 [×2], C22⋊C8 [×2], C4⋊C8 [×2], C2×C42, C5⋊C8 [×4], C4×D5 [×6], C2×Dic5 [×3], C2×C20 [×3], C22×D5, C42.6C4, C4×Dic5 [×3], C4×C20, C2×C5⋊C8 [×4], C2×C4×D5 [×3], C10.C42 [×2], D10⋊C8 [×2], Dic5⋊C8 [×2], D5×C42, C42.7F5
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], C23, M4(2) [×4], C22×C4, C4○D4 [×2], F5, C42⋊C2, C2×M4(2) [×2], C2×F5 [×3], C42.6C4, C22×F5, D5⋊M4(2) [×2], D10.C23, C42.7F5
Generators and relations
G = < a,b,c,d | a4=b4=c5=1, d4=a2b2, ab=ba, ac=ca, dad-1=ab2, bc=cb, dbd-1=a2b-1, dcd-1=c3 >
(1 69 61 85)(2 82 62 66)(3 71 63 87)(4 84 64 68)(5 65 57 81)(6 86 58 70)(7 67 59 83)(8 88 60 72)(9 139 20 43)(10 48 21 144)(11 141 22 45)(12 42 23 138)(13 143 24 47)(14 44 17 140)(15 137 18 41)(16 46 19 142)(25 115 121 157)(26 154 122 120)(27 117 123 159)(28 156 124 114)(29 119 125 153)(30 158 126 116)(31 113 127 155)(32 160 128 118)(33 130 100 93)(34 90 101 135)(35 132 102 95)(36 92 103 129)(37 134 104 89)(38 94 97 131)(39 136 98 91)(40 96 99 133)(49 146 110 78)(50 75 111 151)(51 148 112 80)(52 77 105 145)(53 150 106 74)(54 79 107 147)(55 152 108 76)(56 73 109 149)
(1 83 57 71)(2 88 58 68)(3 85 59 65)(4 82 60 70)(5 87 61 67)(6 84 62 72)(7 81 63 69)(8 86 64 66)(9 89 24 130)(10 94 17 135)(11 91 18 132)(12 96 19 129)(13 93 20 134)(14 90 21 131)(15 95 22 136)(16 92 23 133)(25 79 125 151)(26 76 126 148)(27 73 127 145)(28 78 128 150)(29 75 121 147)(30 80 122 152)(31 77 123 149)(32 74 124 146)(33 43 104 143)(34 48 97 140)(35 45 98 137)(36 42 99 142)(37 47 100 139)(38 44 101 144)(39 41 102 141)(40 46 103 138)(49 118 106 156)(50 115 107 153)(51 120 108 158)(52 117 109 155)(53 114 110 160)(54 119 111 157)(55 116 112 154)(56 113 105 159)
(1 147 132 143 113)(2 144 148 114 133)(3 115 137 134 149)(4 135 116 150 138)(5 151 136 139 117)(6 140 152 118 129)(7 119 141 130 145)(8 131 120 146 142)(9 27 81 111 39)(10 112 28 40 82)(11 33 105 83 29)(12 84 34 30 106)(13 31 85 107 35)(14 108 32 36 86)(15 37 109 87 25)(16 88 38 26 110)(17 55 128 103 70)(18 104 56 71 121)(19 72 97 122 49)(20 123 65 50 98)(21 51 124 99 66)(22 100 52 67 125)(23 68 101 126 53)(24 127 69 54 102)(41 89 73 63 157)(42 64 90 158 74)(43 159 57 75 91)(44 76 160 92 58)(45 93 77 59 153)(46 60 94 154 78)(47 155 61 79 95)(48 80 156 96 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,69,61,85)(2,82,62,66)(3,71,63,87)(4,84,64,68)(5,65,57,81)(6,86,58,70)(7,67,59,83)(8,88,60,72)(9,139,20,43)(10,48,21,144)(11,141,22,45)(12,42,23,138)(13,143,24,47)(14,44,17,140)(15,137,18,41)(16,46,19,142)(25,115,121,157)(26,154,122,120)(27,117,123,159)(28,156,124,114)(29,119,125,153)(30,158,126,116)(31,113,127,155)(32,160,128,118)(33,130,100,93)(34,90,101,135)(35,132,102,95)(36,92,103,129)(37,134,104,89)(38,94,97,131)(39,136,98,91)(40,96,99,133)(49,146,110,78)(50,75,111,151)(51,148,112,80)(52,77,105,145)(53,150,106,74)(54,79,107,147)(55,152,108,76)(56,73,109,149), (1,83,57,71)(2,88,58,68)(3,85,59,65)(4,82,60,70)(5,87,61,67)(6,84,62,72)(7,81,63,69)(8,86,64,66)(9,89,24,130)(10,94,17,135)(11,91,18,132)(12,96,19,129)(13,93,20,134)(14,90,21,131)(15,95,22,136)(16,92,23,133)(25,79,125,151)(26,76,126,148)(27,73,127,145)(28,78,128,150)(29,75,121,147)(30,80,122,152)(31,77,123,149)(32,74,124,146)(33,43,104,143)(34,48,97,140)(35,45,98,137)(36,42,99,142)(37,47,100,139)(38,44,101,144)(39,41,102,141)(40,46,103,138)(49,118,106,156)(50,115,107,153)(51,120,108,158)(52,117,109,155)(53,114,110,160)(54,119,111,157)(55,116,112,154)(56,113,105,159), (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;
G:=Group( (1,69,61,85)(2,82,62,66)(3,71,63,87)(4,84,64,68)(5,65,57,81)(6,86,58,70)(7,67,59,83)(8,88,60,72)(9,139,20,43)(10,48,21,144)(11,141,22,45)(12,42,23,138)(13,143,24,47)(14,44,17,140)(15,137,18,41)(16,46,19,142)(25,115,121,157)(26,154,122,120)(27,117,123,159)(28,156,124,114)(29,119,125,153)(30,158,126,116)(31,113,127,155)(32,160,128,118)(33,130,100,93)(34,90,101,135)(35,132,102,95)(36,92,103,129)(37,134,104,89)(38,94,97,131)(39,136,98,91)(40,96,99,133)(49,146,110,78)(50,75,111,151)(51,148,112,80)(52,77,105,145)(53,150,106,74)(54,79,107,147)(55,152,108,76)(56,73,109,149), (1,83,57,71)(2,88,58,68)(3,85,59,65)(4,82,60,70)(5,87,61,67)(6,84,62,72)(7,81,63,69)(8,86,64,66)(9,89,24,130)(10,94,17,135)(11,91,18,132)(12,96,19,129)(13,93,20,134)(14,90,21,131)(15,95,22,136)(16,92,23,133)(25,79,125,151)(26,76,126,148)(27,73,127,145)(28,78,128,150)(29,75,121,147)(30,80,122,152)(31,77,123,149)(32,74,124,146)(33,43,104,143)(34,48,97,140)(35,45,98,137)(36,42,99,142)(37,47,100,139)(38,44,101,144)(39,41,102,141)(40,46,103,138)(49,118,106,156)(50,115,107,153)(51,120,108,158)(52,117,109,155)(53,114,110,160)(54,119,111,157)(55,116,112,154)(56,113,105,159), (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );
G=PermutationGroup([(1,69,61,85),(2,82,62,66),(3,71,63,87),(4,84,64,68),(5,65,57,81),(6,86,58,70),(7,67,59,83),(8,88,60,72),(9,139,20,43),(10,48,21,144),(11,141,22,45),(12,42,23,138),(13,143,24,47),(14,44,17,140),(15,137,18,41),(16,46,19,142),(25,115,121,157),(26,154,122,120),(27,117,123,159),(28,156,124,114),(29,119,125,153),(30,158,126,116),(31,113,127,155),(32,160,128,118),(33,130,100,93),(34,90,101,135),(35,132,102,95),(36,92,103,129),(37,134,104,89),(38,94,97,131),(39,136,98,91),(40,96,99,133),(49,146,110,78),(50,75,111,151),(51,148,112,80),(52,77,105,145),(53,150,106,74),(54,79,107,147),(55,152,108,76),(56,73,109,149)], [(1,83,57,71),(2,88,58,68),(3,85,59,65),(4,82,60,70),(5,87,61,67),(6,84,62,72),(7,81,63,69),(8,86,64,66),(9,89,24,130),(10,94,17,135),(11,91,18,132),(12,96,19,129),(13,93,20,134),(14,90,21,131),(15,95,22,136),(16,92,23,133),(25,79,125,151),(26,76,126,148),(27,73,127,145),(28,78,128,150),(29,75,121,147),(30,80,122,152),(31,77,123,149),(32,74,124,146),(33,43,104,143),(34,48,97,140),(35,45,98,137),(36,42,99,142),(37,47,100,139),(38,44,101,144),(39,41,102,141),(40,46,103,138),(49,118,106,156),(50,115,107,153),(51,120,108,158),(52,117,109,155),(53,114,110,160),(54,119,111,157),(55,116,112,154),(56,113,105,159)], [(1,147,132,143,113),(2,144,148,114,133),(3,115,137,134,149),(4,135,116,150,138),(5,151,136,139,117),(6,140,152,118,129),(7,119,141,130,145),(8,131,120,146,142),(9,27,81,111,39),(10,112,28,40,82),(11,33,105,83,29),(12,84,34,30,106),(13,31,85,107,35),(14,108,32,36,86),(15,37,109,87,25),(16,88,38,26,110),(17,55,128,103,70),(18,104,56,71,121),(19,72,97,122,49),(20,123,65,50,98),(21,51,124,99,66),(22,100,52,67,125),(23,68,101,126,53),(24,127,69,54,102),(41,89,73,63,157),(42,64,90,158,74),(43,159,57,75,91),(44,76,160,92,58),(45,93,77,59,153),(46,60,94,154,78),(47,155,61,79,95),(48,80,156,96,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])
Matrix representation ►G ⊆ GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
23 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 34 | 14 | 0 | 27 |
0 | 0 | 0 | 7 | 14 | 27 |
0 | 0 | 27 | 14 | 7 | 0 |
0 | 0 | 27 | 0 | 14 | 34 |
32 | 0 | 0 | 0 | 0 | 0 |
39 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
8 | 10 | 0 | 0 | 0 | 0 |
5 | 33 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 20 | 24 | 7 |
0 | 0 | 7 | 27 | 31 | 31 |
0 | 0 | 14 | 10 | 10 | 14 |
0 | 0 | 34 | 34 | 17 | 21 |
G:=sub<GL(6,GF(41))| [1,23,0,0,0,0,0,40,0,0,0,0,0,0,34,0,27,27,0,0,14,7,14,0,0,0,0,14,7,14,0,0,27,27,0,34],[32,39,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[8,5,0,0,0,0,10,33,0,0,0,0,0,0,24,7,14,34,0,0,20,27,10,34,0,0,24,31,10,17,0,0,7,31,14,21] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 5 | 8A | ··· | 8H | 10A | 10B | 10C | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | ··· | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 20 | ··· | 20 | 4 | 4 | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | M4(2) | C4○D4 | M4(2) | F5 | C2×F5 | D5⋊M4(2) | D10.C23 |
kernel | C42.7F5 | C10.C42 | D10⋊C8 | Dic5⋊C8 | D5×C42 | C4×Dic5 | C4×C20 | C2×C4×D5 | Dic5 | Dic5 | D10 | C42 | C2×C4 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 3 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._7F_5
% in TeX
G:=Group("C4^2.7F5");
// GroupNames label
G:=SmallGroup(320,1022);
// by ID
G=gap.SmallGroup(320,1022);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,344,758,100,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=1,d^4=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^3>;
// generators/relations